DEPARTMENT OF COMPUTER SCIENCE

CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 14 - REAL-TIME SEARCH

Dr. Jean-Alexis Delamer

Recap

- Optimal solution can be found using heuristic search.
- The state space can be very large implying an exponential time and space effort.
 - Some methods exists to deal with these constraints.
 - Linear-space search.
 - State space pruning.
- It is also possible to accept nonoptimal solutions to deal with these constraints.

Recap

- With optimal or suboptimal solutions, the algorithms always find a feasible solution.
- What does this imply?
 - The algorithm needs to terminate.
 - It requires time.
 - Hard to predict how long it will take.

- Real time search describes search methods that need a constant search time between action executions.
 - Ex: An algorithm that needs 2 seconds to compute the next action.
- We will consider a more restrictive definition.
 - Real-time search as a variant of agent-centered search.

- Definition (Agent-centered search).
 - Restricts the search to the part of the state space around the current state of the agent.

• Example:

StFX

- The current position of a mobile robot.
- The current board position of a game.

• Why?

- Interleaving searches and action executions has advantages for intelligent systems (agents) that interact with the world.
- Decision time can be critical, so we need to guarantee how long it will take.
 - Autonomous cars, airplanes, etc.

- The part of the state space around the current state of the agent is immediately relevant for the agent.
 - Contains the state that the agent will be in soon.
 - Ex: Closest obstacles for an autonomous vehicle.
 - Sometimes the only part of the state space known by the agent.
- Agent-centered search does not search all the way from the start state to the goal state.

- Agent-centered search:
 - Decides on the local search space.
 - Searches it.

- Determines which action to executes.
- Then executes the actions and repeat the process.
- The best-known example of agent-centered search is game playing.
 - Ex: Chess, GO, etc.
 - The states correspond to board positions.
 - Games-playing programs perform minmax search with a limited horizon (lookahead) to decide the action.

- Why using a limited lookahead?
 - Limit the search space, so reduce the time to calculate the action.
 - Future moves of the opponent cannot be predicted with certainty.
 - Nondeterministic search tasks.
 - Results in an information limitation that can be solved by enumerating all possible moves.
- Agent-centered search choose a move in reasonable amount of time while focusing on the most relevant part of the search space.

- The previous search algorithm we saw like A*
 - They compute the optimal solutions, the minimal-cost paths.
 - Then follow them.
- These algorithms are called offline algorithm (or offline search).
 - The search is not done while executing the plan.
 - Ex: Navigation systems compute the entire path before you start the trip.
- Agent-centered search methods are online algorithms (online search).
 - Ex: Autonomous cars

- The online algorithms are characterized with greedy action-selection steps.
 - It aims to solve suboptimal search tasks.
- They are suboptimal, because they are looking for any path from the start to the goal.
 - They are revolving. They repeat the same process until they reach the goal.

- Real-Time search methods have two advantages:
 - Time constraints:
 - Can execute actions with a soft or hard time constraints.
 - Can allow an amount of time to the algorithm. (hard constraint)
 - Or a range. (soft constraint)
 - Since the local search spaces are independent of the sizes of the state spaces.
 - Objective is to minimize the execution cost.
 - Sum of search and execution cost:
 - Execute actions before the complete consequences are known.
 - Likely to incur some overhead in terms of the execution cost (suboptimal).
 - Outweighed by a decrease in the search cost.
 - Because they allow agents to gather information early in nondeterministic state spaces.
 - Update the knowledge regularly.
 - Decrease the sum of the search and execution cost compared to search methods that calculate the entire solution.

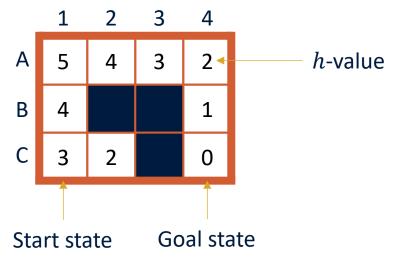
- Agent-centered search methods must ensure:
 - The search does not cycle without making progress toward a goal state.
 - A potential problem since actions are executed before their consequences are completely known.
 - It remains possible to achieve the goal and it will do so.
 - The goal remains achievable if:
 - No actions exist of which the execution makes it impossible.
 - Avoid their execution in case they do exist.
 - The methods can reset the agent into the start state.

- The real-time search methods store a value, called *h*-value for each state encountered.
- It updates them as the search progress.
- Why?

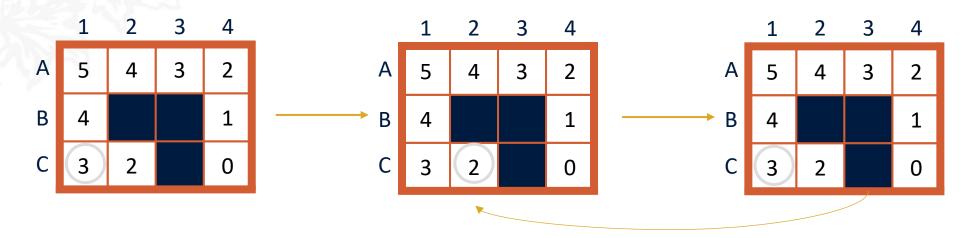
- Focus the search.
- Avoid cycling.
- It's a large part of the search time.

- Learning real-time A* (LRTA*) is the most popular real-time search algorithm.
- The *h*-values approximates the goal distances of the states.
 - Very similar to A*.
 - Can be initialized with a heuristic.
 - It can be zero if no heuristic are available.

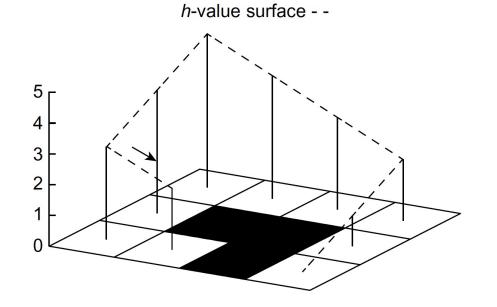
- Example of a mobile robot.
 - All costs are one.
 - Navigates until the goal is reached.
 - *h*-values are initialized with the Manhattan distances.



- When starting in C1:
 - It is more advantageous to go in C2.
 - It has a cost of 3.
 - Going in B1 has a cost of 5.
- Choosing the the minimal cost-to-go does not always reach the goal.



- It could cycle forever due to a local minimum of the *h*-value.
 - Local minimum are known problem in heuristic search.
 - It's not intuitive that the algorithm needs to "climb" first.
- How would you solve this problem?
 - We could randomized the action-selection.

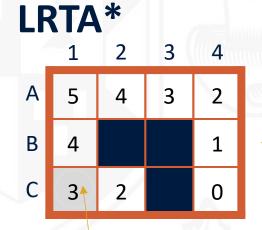


- LRTA* performs a search around the current state of the agent to determine which action to execute.
- It operates as follows:
 - Local Search Space-Generation Step.
 - The local search space can be any set of nongoal states containing the current state.
 - A local search space is minimal iff it contains only the current state.
 - It is maximal iff it contains all nongoal states.
 - Value-Update Step.
 - Assign each state in the local search space its correct goal distance.
 - Assuming that the *h*-value of the states just outside of the local search space correspond to their correct goal distances.
 - In other words, it assigns each state in the local search space the minimum execution cost for getting from it to a state just outside the local search space plus the remaining execution cost to reach the goal (*h*-value).

StFX

It operates as follows:

- Local Search Space-Generation Step.
 - The local search space can be any set of nongoal states containing the current state.
 - A local search space is minimal iff it contains only the current state.
 - It is maximal iff it contains all nongoal states.
- Value-Update Step.
 - In other words, it assigns each state in the local search space the minimum execution cost for getting from it to a state just outside the local search space plus the remaining execution cost to reach the goal (*h*-value).
- Action-Selection Step.
 - Selects the first action that is supposed to minimize the execution cost.
- Action-Execution Step.
 - Execute the selected action and updates the state of the agent.
 - If the new state is outside of the local search space, it repeat the process.



Minimal local search space

Because it's not the minimal cost path, we launch a new trial, with a restart of the agent. 2

4

4

1

5

4

3

Α

С

► B

R

3

3

4

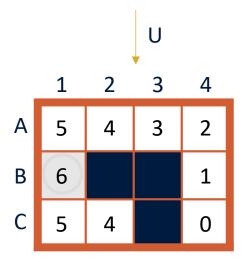
2

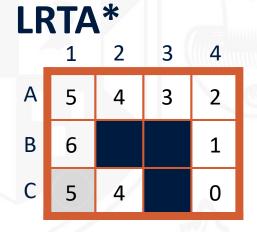
1

0

After this, you will reach the goal in 9 actions.

	1	2	3	4
А	5	4	3	2
В	4			1
С	5	4		0





We restart, but we keep the updated *h*values

> Because it's not the minimal cost path, we launch a new trial, with a restart of the agent.

2

4

6

1

5

6

5

Α

С

▶ B

R

3

3

4

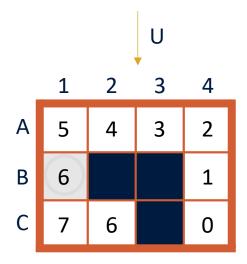
2

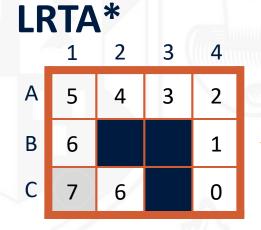
1

0

After this, you will reach the goal in 9 actions.

	1	2	3	4
А	5	4	3	2
В	6			1
С	7	6		0





We restart, but we keep the updated *h*values

> In the next trials, the robot follows this minimal-cost path, so we stop.

R

2

4

6

1

5

6

7

Α

► B

С

3

3

4

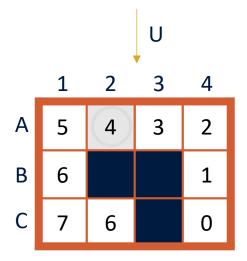
2

1

0

After this, you will reach the goal in 7 actions.

	1	2	3	4
А	5	4	3	2
В	6			1
С	7	6		0



StFX

• Formaly:

- S denotes the finite set of states, with $s \in S$ the start state and $T \subseteq S$ the set of goal states.
- $A(u) \neq \emptyset$ denotes the finite set of actions that can be executed in state $u \in S$.
- $0 < w(u, a) < \infty$ denotes the action cost from the execution of action $a \in A(u)$ in state $u \in S$.
- $w_{\min} = \min_{u \in S, a \in A(u)} w(u, a)$ denotes the minimal action cost of any action.
- Succ(u, a) ⊆ S denotes the set of successor states that results from the execution of action a ∈ A(u), in state u ∈ S.
- $a(u) \in Succ(u, a)$ denotes the state that results from an actual execution of action $a \in A(u)$, in state $u \in S$.
- In deterministic state spaces, a(u) = Succ(u, a). After an action a in state u, there is only one successor.

Procedure LRTA* Input: Search task with initial h-values Side effect: Updated h-values

```
u \leftarrow s
while (u \notin T)
Generate S_{lss} with u \in S_{lss} and S_{lss} \cap T = \emptyset
Value-Update-Step(h, S_{lss})
repeat
a \leftarrow \arg\min_{a \in A(u)} \{w(u, a) + h(Succ(u, a))\}
u \leftarrow a(u)
until (u \notin S_{lss})
;; Ur
```

```
;; Start in start state
;; While goal not achieved
;; Generate local search space
;; Update h-values, see Algorithm 11.2
;; Repeat
:: Select action
```

```
;; Until local search space exited (optional)
```

Procedure Value-Update-Step

Input: Search task with *h*-values and local search space **Side effect:** Updated *h*-values

```
for each u \in S_{lss};; For each state in local search spacetemp(u) \leftarrow h(u);; Backup h-valueh(u) \leftarrow \infty;; Initialize h-valuewhile (|\{u \in S_{lss} | h(u) = \infty\}| \neq 0);; While infinite h-values existv \leftarrow \arg\min_{u \in S_{lss} | h(u) = \infty};; While infinite h-values existnax\{temp(u), \min_{a \in A(u)} \{w(u, a) + h(Succ(u, a))\}\};; Determine stateh(v) \leftarrow \max\{temp(v), \min_{a \in A(v)} \{w(v, a) + h(Succ(v, a))\}\};; Update h-valueif (h(v) = \infty) return;; No improvement possible
```